COmpression et REprésentation des Signaux Audiovisuels>
BaRe-ESA: A Riemannian Framework for Unregistered Human Body Shapes
Emmanuel Emmanuel  1@  , Emery Pierson  2@  , Martin Bauer  3@  , Nicolas Charon  4@  , Mohamed Daoudi  5@  
1 : Florida State University Tallahassee
2 : Ecole Polytechnique
LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris
3 : Florida State University
4 : University of Houston
5 : IMT Nord Europe
Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL

Ce papier a été accepté à la conférence ICCV 2023. We present Basis Restricted Elastic Shape Analysis (BaRe-ESA), a novel Riemannian framework for human body scan representation, interpolation and extrapolation. BaRe-ESA operates directly on unregistered meshes, i.e., without the need to establish prior point to point corre- spondences or to assume a consistent mesh structure. Our method relies on a latent space representation, which is equipped with a Riemannian (non-Euclidean) metric asso- ciated to an invariant higher-order metric on the space of surfaces. Experimental results on the FAUST and DFAUST datasets show that BaRe-ESA brings significant improve- ments with respect to previous solutions in terms of shape registration, interpolation and extrapolation. The efficiency and strength of our model is further demonstrated in appli- cations such as motion transfer and random generation of body shape and pose.


Chargement... Chargement...